If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1x-650=0
We add all the numbers together, and all the variables
x^2+x-650=0
a = 1; b = 1; c = -650;
Δ = b2-4ac
Δ = 12-4·1·(-650)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-51}{2*1}=\frac{-52}{2} =-26 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+51}{2*1}=\frac{50}{2} =25 $
| 11(x/11)=11(8) | | (3x-4)=-15x+20 | | x+23=115 | | n+11/2=-4 | | (16+12)÷(12−8)=n | | (16+12)÷(12−8)=nn= | | 5+6b=b=3 | | 2(3x-5)+4x-2=8 | | -10r=10-9r | | y-4.8=7.6 | | 1=3c−9−2 | | 87+x=97 | | -25-x=49 | | 2345=5646x | | 36x4.82=173.52 | | -8w-40=-2(w+8) | | 1=3(c−9)−2 | | 3+4=12;x= | | (4(x+3))/5-1=7 | | b/20=1/5 | | 3+4=12;x=8 | | -6x+2=40 | | 2x+1=4x–11/ | | 3(2x-3=15 | | 28/18=36/n | | X=7y^2+21 | | 8.25t+6=14.5t=11 | | 2(5)^2x-1+3=16 | | (5x-30)= | | 6x^2-18x-18=24 | | 3.3x=19.8 | | 28/18=n/36 |